UC Berkeley EECS
Sr Lecturer SOE
Dan Garcia

3D PRINTING... WOW!

Cheap 3D Printers are making it
possible for designers, tinkerers,
students, etc. to render their
designs in physical space. It's
reduced the design-test-debug
cycle time by a hundred fold!

The Beauty and Joy of ’
Coumfypuﬁng Y

Lecture #2 : Functions

C

3D PRINTING... IP?!

Have they considered how
much work it is to design a 3D
model? The current technology
“gives” it all away when sent to
another to print. If | sell it fo you,
you get my intellectual property!

www.technologyreview.com/news/518591/copy-protection-
for-3-d-printing-aims-to-prevent-a-piracy-plague/

> Generadlization (in CS10)

= You are going to learn
to write functions, like
in math class:

REVIEW

y = sin(x)

= sin is the function
o X is the input
o |t returns a single value,

“Function machine” from Simply
Scheme (Harvey)

a number
Garcia
UC Berkeley “The Beauty and Joy of Computing” : Functions (2) @(D@@

" Dan's kid's 2 grade HW!

(“What’s My Rule?”

Family Today your child learned about a kind of problem you may not have seen before. We call it
Note “What's My Rule?” Please ask your child to explain it to you.
Here is a little background information: Imagine a machine with a funnel at the top and a tube
coming out of the bottom. The machine can be programmed so that if a number is dropped
into the funnel, the machine does something to the number, and a new number comes out of
the tube. For example, the machine could be programmed to add 5 to any number that is
dropped in. If you put in 3, 8 would come out. If you put in 7, 12 would come out.

We call this device You can show the results of the
rule “+5” in a table:
3 i
Everyday : in | out
(| A Y e]
Mathematics

ety o Choge Sk Mahamatic rfc 3 8

) STUDENT MATH JOURNAL

Rule 7 12

15 20

Garcia
UC Berkeley “The Beauty and Joy of Computing® : Functions (3) @(D@@

> Function basics

* Functions take in O or
more inputs and return
exactly 1 output

» The same inputs MUST
yield same outputs.
= Qutput function of input only

= Other rules of functions
= No state (prior history)

= No mutation (no variables
get modified)

= No side effects (nothing else
happens)

Garcia
UC Berkeley “The Beauty and Joy of Computing” : Functions (4) @®®©

CS lllustrated function metaphor

> Which is NOT a function?

a) | Bto P

b D

G L) :
d) l—v [) "

Garcia
UC Berkeley “The Beauty and Joy of Computing* : Functions (5) @®®@

id .
More Terminology (from Math)
= Domain * Range
= The “class” of input a function o All the possible return values
accepts of a function
= Examples * Examples
o Sqrt of o Sqrt of
* Positive numbers = Non-negative numbers
= Length of o Length of
= Sentence, word, number * Non-negative integer
0o < 0o <
= Both: Sentence, word, number = Boolean (true or false)
o _and_ o _and_
 Booleans = Boolean (true or false)
o Lefter _of _ o Letter _of _
= Number from 1 to input length = Letter
* Sentence, word, number canda
U Berkey “The Booutyand oy of Computing :unchns @ ©2%9

]OTypes of input (there are more)

¢ Words separated by N

Sentences _spoces N20
eE.g.,CST10is great
e Length 21, no spaces
word ¢ Cal, 42, CS10
e length =1
Character .:;°.5

° ° o (- |
Digit ;.7

UC Berkeley “The Beauty and Joy of Computing” : Functions (7) m%lj@:s
4 Why functions are great!

= If a function only depends on
the information it gets as
input, then nothing else can
affect the output.
= |t can run on any computer and

get the same answer.

= This makes it incredibly easy

to parallelize functions.

= Functional programming is a
great model for writing software
that runs on multiple systems at
the same time.

Gardia
UC Berkeley “The Beauty and Joy of Computing” : Functions (8) @(D@@

Datacenter

¥ .
Scratch - BYOB (Build Your Own Blocks)
¥ Snap!
=
QS - p
S A ASnap!
= Scratch = BYOB (and Snar!)
= Invented @ MIT = Based on Scratch code
= Maintained by MIT o Maintained by jens & Cal
= Huge community = Growing community
= Sharing via Website = No sharing (yet) ®
= No functions ® o Functions! © ... “Blocks”
o Scratch 2.0 in Flash o Snap! Is in HTML5
* NoiOS devices. ® = All devices ©
@ o scratch.mit.edu o snap.berkeley.edu/run Garda
UC Berkeley “The Beauty and Joy of Computing” : Functions (9)

e
Why use functions? (1)

e
: (4] Draw Square of Side length J
move steps =
pen down

move 'length’ steps
>

turn 3) m degrees
& -
'move steps
.turn) D) degrees
=]
3]

move steps
>

turn $) degrees
@ The power of generalization!

UC Berkeley “The Beauty and Joy of Computing : Functions (10)

i
Why use functions? (2)

They can be composed together to
make even more magnificent things.

They are literally the building blocks of
almost everything that we create when
we program.

We call the process of breaking big
problems down into smaller tasks
functional decomposition

I am
__join ,\m /, |years older than you, y
' UC Berkeley “The Beauty and Joy of Computing® : Functions (T @(D@@

" Types of Blocks

= Command
= No outputs, meant for
side-effects move steps

= Not a function...

» Reporter (Function) (- [hello [world}
= Any type of output

= Predicate (Function) a @8>
= Boolean output
= (true or false)

Gardia
UC Berkeley “The Beauty and Joy of Computing® : Functions (12) @(D@@

r . . .
Quick Preview: Recursion

Recursion is a
technique for
defining functions
that use themselves |
to complete their own n

definition.

M. C. Escher : Drawing Hands
W R

We will spend a lot of |
time on this.

Garcia
UC Berkeley “The Beauty and Joy of Computing” : Functions (13) @®®©

en.wikipedia.org/wiki/Functional programming

Funchons Summary

= Computation is the
evaluation of functions £ (x)=(x+3) * G
= Plugging pipes together
= Each pipe, or function, has
exactly 1 output
= Functions can be input!

» Features X 3
= No state

= E.g., variable assignments f
4

— 1

= No mutation
- E.g., changing variable values

s No side effects

= Need BYOB/Snap!, and
not Scratch 1.x

(GO

UC Berkeley “The Beauty and Joy of C ting” : Functi

{ °J

