
UC Berkeley EECS
Sr Lecturer SOE

Dan Garcia

www.technologyreview.com/news/518591/copy-protection-
for-3-d-printing-aims-to-prevent-a-piracy-plague/!

The Beauty and Joy of
Computing

Lecture #2 : Functions

Cheap 3D Printers are making it
possible for designers, tinkerers,

students, etc. to render their
designs in physical space. It’s

reduced the design-test-debug
cycle time by a hundred fold!

Have they considered how
much work it is to design a 3D
model? The current technology
“gives” it all away when sent to
another to print. If I sell it to you,
you get my intellectual property!

UC Berkeley “The Beauty and Joy of Computing” : Functions (2)

Garcia

§  You are going to learn
to write functions, like
in math class:

y = sin(x)

ú  sin is the function
ú  x is the input
ú  It returns a single value,

a number

Generalization (in CS10) REVIEW

“Function machine” from Simply
Scheme (Harvey)

x

sin

UC Berkeley “The Beauty and Joy of Computing” : Functions (3)

Garcia

Dan’s kid’s 2nd grade HW!

UC Berkeley “The Beauty and Joy of Computing” : Functions (4)

Garcia

Function basics
§  Functions take in 0 or

more inputs and return
exactly 1 output

§  The same inputs MUST
yield same outputs.
ú  Output function of input only

§  Other rules of functions
ú  No state (prior history)
ú  No mutation (no variables

get modified)
ú  No side effects (nothing else

happens)

CS Illustrated function metaphor

UC Berkeley “The Beauty and Joy of Computing” : Functions (5)

Garcia

Which is NOT a function?

a) 

b) 

c) 

d) 

e) 

UC Berkeley “The Beauty and Joy of Computing” : Functions (6)

Garcia

§  Domain
ú  The “class” of input a function

accepts

§  Examples
ú  Sqrt of

   Positive numbers

ú  Length of
   Sentence, word, number

ú  _ < _
   Both: Sentence, word, number

ú  _ and _
   Booleans

ú  Letter _ of _
   Number from 1 to input length
   Sentence, word, number

§  Range
ú  All the possible return values

of a function

§  Examples
ú  Sqrt of

   Non-negative numbers

ú  Length of
   Non-negative integer

ú  _ < _
   Boolean (true or false)

ú  _ and _
   Boolean (true or false)

ú  Letter _ of _
   Letter

More Terminology (from Math)

UC Berkeley “The Beauty and Joy of Computing” : Functions (7)

Garcia

Types of input (there are more)

Sentences

Word

Character

Digit

• Words separated by N
spaces, N ≥ 0

• E.g., CS 10 is great

• Length ≥ 1, no spaces
• Cal, 42, CS10

• Length = 1
• E.g., A, 3, #

• 0-9 only
• E.g., 7

UC Berkeley “The Beauty and Joy of Computing” : Functions (8)

Garcia

§  If a function only depends on
the information it gets as
input, then nothing else can
affect the output.
ú  It can run on any computer and

get the same answer.

§  This makes it incredibly easy
to parallelize functions.
ú  Functional programming is a

great model for writing software
that runs on multiple systems at
the same time.

Why functions are great!

Datacenter

UC Berkeley “The Beauty and Joy of Computing” : Functions (9)

Garcia

§  Scratch
ú  Invented @ MIT
ú  Maintained by MIT
ú  Huge community
ú  Sharing via Website
ú  No functions L
ú  Scratch 2.0 in Flash

   No iOS devices. L

ú  scratch.mit.edu

§  BYOB (and SNAP!)
ú  Based on Scratch code
ú  Maintained by jens & Cal
ú  Growing community
ú  No sharing (yet) L
ú  Functions! J … “Blocks”
ú  Snap! Is in HTML5

   All devices J

ú  snap.berkeley.edu/run

Scratch à BYOB (Build Your Own Blocks)

UC Berkeley “The Beauty and Joy of Computing” : Functions (10)

Garcia

Why use functions? (1)

The power of generalization!

UC Berkeley “The Beauty and Joy of Computing” : Functions (11)

Garcia

Why use functions? (2)
They can be composed together to
make even more magnificent things.

They are literally the building blocks of
almost everything that we create when
we program.

We call the process of breaking big
problems down into smaller tasks
functional decomposition

UC Berkeley “The Beauty and Joy of Computing” : Functions (12)

Garcia

§  Command
ú  No outputs, meant for

side-effects
ú  Not a function…

§  Reporter (Function)
ú  Any type of output

§  Predicate (Function)
ú  Boolean output

   (true or false)

Types of Blocks

UC Berkeley “The Beauty and Joy of Computing” : Functions (13)

Garcia

Quick Preview: Recursion
Recursion is a
technique for

defining functions
that use themselves

to complete their own
definition.

We will spend a lot of
time on this.

M. C. Escher : Drawing Hands!

UC Berkeley “The Beauty and Joy of Computing” : Functions (14)

Garcia

§  Computation is the
evaluation of functions
ú  Plugging pipes together
ú  Each pipe, or function, has

exactly 1 output
ú  Functions can be input!

§  Features
ú  No state

   E.g., variable assignments

ú  No mutation
   E.g., changing variable values

ú  No side effects

§  Need BYOB/Snap!, and
not Scratch 1.x

Functions Summary
en.wikipedia.org/wiki/Functional_programming

f(x)=(x+3)* x!

+!
x 3!

*!

x!

f!
x!

